Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Numerous numerical studies have been carried out in recent years that simulate different aspects of star-planet interactions. These studies focus mostly on hot Jupiters with sun-like stars. However, more realistic simulations require the inclusion of a wide range of stellar types in the study of stellar-planetary interactions. In this study, I use MHD simulations to model star-planet interactions assuming different stellar types and a Jovian exoplanet.more » « less
- 
            Intense currents produced during geomagnetic storms dissipate energy in the ionosphere through Joule heating. This dissipation has significant space weather effects, and thus it is important to determine the ability of physics-based simulations to replicate real events quantitatively. Several empirical models estimate Joule heating based on ionospheric currents using the AE index. In this study, we select 11 magnetic storm simulations from the CCMC database and compare the integrated Joule heating in the simulations with the results of empirical models. We also use the SWMF global magnetohydrodynamic simulations for 12 storms to reproduce the correlation between the simulated AE index and simulated Joule heating. We find that the scale factors in the empirical models are half what is predicted by the SWMF simulations.more » « less
- 
            During the main phase of many magnetic storms the solar wind Mach number is low and IMF magnitude is large. Under these conditions, the ionospheric potential saturates, and it becomes relatively insensitive to further increases in the IMF magnitude. On the other hand, the dayside merging rate and the potential become sensitive to the solar wind density. This should result in a correlation between the intensity of the auroral electrojets and the solar wind density. In this study we provide a sample of 314 moderate to strong storms and investigate the correlation between Dst index and the energy dissipated in the ionosphere. We show that for lower Mach numbers, this correlation decreases. We also show that the ionospheric indices of the storms with the lower Mach number are less correlated to the geoeffectiveness of the solar wind during these storms.more » « less
- 
            Exoplanets' magnetic fields can help determine their interior structure, which is otherwise difficult to study. Additionally, the knowledge of exoplanets' magnetic fields can shed light on the stability of their atmospheres. Solar system planets with a magnetic field emit Auroral Kilometric Radiation (AKR) due to the cyclotron radiation of electrons orbiting the planet's magnetic field lines. In this project, we investigate the probability of detecting AKR emission of Jupiter-like exoplanets. To do so, we collect information on detected Jupiter-like exoplanets from NASA's exoplanet archive data. Assuming they have the same AKR emission as Jupiter, we calculate the detection probability of this emission using the Square Kilometer Array (SKA) radio telescope.more » « less
- 
            As of now the knowledge obtained on the extrasolar planetary magnetic fields is still small compared to what is known of the magnetic fields composed in our solar system. Planets with magnetic fields radiate in the radio band. Specifically, Auroral Kilometric radiation (AKR) originates from cyclotron emission of electrons orbiting the planet's magnetic field lines. In this project, we investigate the possibility of detecting the AKR emission of Earth-like exoplanets. We collect information on detected Earth-like exoplanets from NASA's exoplanet archive data. Assuming they have the same AKR emission as Earth, we calculate the detection probability of this emission using the Square Kilometric Array (SKA) radio telescope.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
